Search results for "molecular crowding"

showing 6 items of 6 documents

Transfer Free Energies of Test Proteins Into Crowded Protein Solutions Have Simple Dependence on Crowder Concentration

2019

The effects of macromolecular crowding on the thermodynamic properties of test proteins are determined by the latter's transfer free energies from a dilute solution to a crowded solution. The transfer free energies in turn are determined by effective protein-crowder interactions. When these interactions are modeled at the all-atom level, the transfer free energies may defy simple predictions. Here we investigated the dependence of the transfer free energy (Δμ) on crowder concentration. We represented both the test protein and the crowder proteins atomistically, and used a general interaction potential consisting of hard-core repulsion, non-polar attraction, and solvent-screened electrostati…

0301 basic medicineWork (thermodynamics)macromolecular crowdingThermodynamicsBiochemistry Genetics and Molecular Biology (miscellaneous)Biochemistrytransfer free energy03 medical and health sciences0302 clinical medicinecrowder concentrationMolecular Bioscienceslcsh:QH301-705.5Molecular BiologyOriginal ResearchPhysicsComponent (thermodynamics)Electrostatics030104 developmental biologylcsh:Biology (General)Virial coefficient030220 oncology & carcinogenesisExcluded volumeexcluded-volumeVirial expansionProtein foldingMacromolecular crowdingsoft attractionFrontiers in Molecular Biosciences
researchProduct

Detecting Protein Aggregation on Cells Surface: Concanavalin A Oligomers Formation

2009

A number of neurodegenerative diseases involve protein aggregation and amyloid formation. Recently evidence has emerged indicating small-transient prefibrillar oligomers as the primary pathogenic agents. Noteworthy, strict analogies exist between the behaviour of cells in culture treated with misfolded non-pathogenic proteins and in pathologic conditions, this instance together with the observation that the oligomers and fibrils are characterised by common structural features suggest that common mechanisms for cytotoxicity could exists and have to be perused in common interactions involved in aggregation.We here report an experimental study on ConcanavalinA (ConA) aggregation and its effect…

0303 health sciencesbiologyAmyloidChemistryN&B confocal microscopy aggregates toxicityBiophysicsProtein aggregationCell membrane03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureProtein structureBiochemistryConcanavalin ACell culturemedicinebiology.proteinBiophysicsMacromolecular crowdingProtein secondary structure030217 neurology & neurosurgery030304 developmental biologyBiophysical Journal
researchProduct

On the Effect of Downscaling in Inkjet Printed Life-Inspired Compartments

2019

The fabrication of size-scalable liquid compartments is a topic of fundamental importance in synthetic biology, aiming to mimic the structures and the functions of cellular compartments. Here, inkjet printing is demonstrated as a customizable approach to fabricate aqueous compartments at different size regimes (from nanoliter to femtoliter scale) revealing the crucial role of size in governing the emerging of new properties. At first, inkjet printing is shown to produce homogenous aqueous compartments stabilized by oil-confinement with mild surfactants down to the hundreds of picoliter scale [1]. Raster Image Correlation Spectroscopy allows to monitor few intermolecular events by the involv…

DNA hairpinsFluorescence LifetimeInkjet PrintingMolecular crowdingSettore CHIM/02 - Chimica Fisica
researchProduct

Printing Life-Inspired Subcellular Scale Compartments with Autonomous Molecularly Crowded Confinement.

2019

A simple, rapid, and highly controlled platform to prepare life-inspired subcellular scale compartments by inkjet printing has been developed. These compartments consist of fL-scale aqueous droplets (few µm in diameter) incorporating biologically relevant molecular entities with programmed composition and concentration. These droplets are ink-jetted in nL mineral oil drop arrays allowing for lab-on-chip studies by fluorescence microscopy and fluorescence life time imaging. Once formed, fL-droplets are stable for several hours, thus giving the possibility of readily analyze molecular reactions and their kinetics and to verify molecular behavior and intermolecular interactions. Here, this pla…

Surface PropertiesDNA hairpinBiomedical EngineeringGeneral Biochemistry Genetics and Molecular BiologyFluorescenceBiomaterialsSettore CHIM/01molecular crowdingbiomolecular confinementlife-like compartmentFluorescence microscopeInkjet printinginkjet printingBiochemistry Genetics and Molecular Biology (all)ChemistryDrop (liquid)Intermolecular forceLife timeDNABiomaterialFluorescencebiomolecular confinement; DNA hairpins; inkjet printing; life-like compartments; molecular crowdingDNA hairpinslife-like compartmentsPrinting Three-DimensionalBiophysicsMolecular probeAdvanced biosystems
researchProduct

Bioanalysis in Femtoliter Scale Printed Artificial Systems

2020

Printing has fueled the development of a new class of artificial biosystems for the qualitative and quantitative determination of bioanalytes [1]. In particular, the multiscale organization (from nanometers to millimeters) and multiplexed molecular composition (DNA, proteins, lipids, polymers) of such platforms enable the determination of molecular interactions in conditions mimicking/redesigning those of the living systems. Since the development of microarrays platforms [2], the downsizing of the “analyzable” feature down to femtoliter (fL) scales has permitted to develop new researches in the field of molecular condensates/confinement. Herein, two relevant examples of fL-scale systems wil…

bioanalysis biomolecular condensates DNA molecular crowding printing
researchProduct

Polymer-induced phase separation in suspensions of bacteria

2010

We study phase separation in suspensions of two unrelated species of rod-like bacteria, Escherichia coli and Sinorhizobium meliloti, induced by the addition of two different anionic polyelectrolytes, sodium polystyrene sulfonate or succinoglycan, the former being synthetic and the latter of natural origin. Comparison with the known behaviour of synthetic colloid-polymer mixtures and with simulations show that "depletion" (or, equivalently, "macromolecular crowding") is the dominant mechanism: exclusion of the non-adsorbing polymer from the region between two neighbouring bacteria creates an unbalanced osmotic force pushing them together. The implications of our results for understanding phe…

chemistry.chemical_classificationSinorhizobium melilotiADSORPTIONbiologyBiofilmMIXTURESfood and beveragesGeneral Physics and AstronomyPolymerAGGREGATIONbiology.organism_classificationmedicine.disease_causeLIGHT-SCATTERINGSUCCINOGLYCANPolyelectrolytechemistryESCHERICHIA-COLImedicineBiophysicsMacromolecular crowdingSodium Polystyrene SulfonateEscherichia coliBEHAVIORBacteriaEPL (Europhysics Letters)
researchProduct